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[10:30am] Capacity for transmission over additive noise channel 

A student asked about a result derived by Claude Shannon in 1948 about how fast bits 

could in theory be communicated over a noisy channel, which is called channel capacity. 

Channel capacity 𝐶 provides a theoretical upper bound on the bit rate in bits/s 

𝐶 = 𝐵
𝐷

2
 log2(1 + SNR) 

where 𝐵 𝑖𝑠 Bandwidth (in Hz) and 𝐷 𝑖𝑠 Dimension (1 for PAM or 2 for QAM). 

The term 
𝐷

2
log2(1 + SNR) is the spectral efficiency in bits/s/Hz where 

SNR =
Signal Power

Noise Power
 (in linear units) 

The channel capacity formula, which is for a single transmitter, single receiver system, 

gives an upper bound but does explain how to reach the bound.  It does give some insights: 

 The largest increase in channel capacity comes from increasing bandwidth. 

 A secondary increase can come from improving spectral efficiency, such as by  

o increasing the effective received SNR through matched filtering and other means 

o using more transmit and receive antennas as used in Wi-Fi and LTE systems 

Communication system designers have developed different modulation, error control 

coding, multiple antenna, and multiple carrier methods in an attempt to reach the bound. 

Multicarrier approaches divide the bandwidth into parallel narrowband subchannels, as is 

done in orthogonal frequency division multiplexing (OFDM) in Wi-Fi and LTE systems. 

[10:35am] Matched filter (Lecture 14 Part 2) 
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 𝑔(𝑡) is the pulse shaping filter 

 ℎ(𝑡) is the matched filter impulse response 

 𝑤(𝑡) is additive noise; each amplitude value follows a Gaussian distribution 𝑁(0, 𝜎2) 

 𝑦(𝑇) is the received symbol amplitude 

 Result from derivation of the optimal matched filter from later today:  

ℎopt(𝑡) = 𝑘⏟
gain

𝑔∗(𝑇 − 𝑡) 

 𝑔∗(⋅) denotes complex conjugate of 𝑔(⋅) 

 Received symbol amplitude: 𝑎𝑛⏟
transmitted

symbol

amplitude

+ 𝑣𝑛⏟
Gaussian
random
variable

 

 Quantize received symbol amplitude to nearest 

transmitted symbol amplitude to estimate th symbol of bits 

[10:50] Matched filter derivation 

 Goal: maximize output signal power 𝑔0(𝑡) = 𝑔(𝑡) ∗ ℎ(𝑡) at 𝑡 = 𝑇 where T = Tsym 

 Goal: minimize output noise power 𝑛(𝑡) = 𝑤(𝑡) ∗ ℎ(𝑡) 

 Equivalently, maximize 𝜂, the peak pulse SNR 

𝜂 =
Peak Signal Power

 Average Noise Power
=

|𝑔0(𝑡)|2

𝐸{𝑛2(𝑡)}
 

 𝐸{𝑛2(𝑡)} means to find the expected (average) instantaneous noise power 𝑛2(𝑡) 

 We don’t know the amplitude values of 𝑛(𝑡), but we can find its power spectrum 

o Power spectrum for signal 𝑥(𝑡) w/ Fourier transform 𝑋(𝑓) is 𝑃𝑥(𝑓) = |𝑋(𝑓)|2 

o Autocorrelation of 𝑥(𝑡) is 𝑅𝑥(𝜏) = 𝑥(𝜏) ∗ 𝑥∗(−𝜏) 

o Autocorrelation is symmetric: 𝑅𝑥(𝜏) = 𝑅𝑥(−𝜏) 

o Multiplication in Fourier domain is convolution in time domain 

o Conjugation in Fourier domain is reversal an conjugation in time 

 Result: power spectrum is Fourier transform of autocorrelation: 

𝑃𝑥(𝑓) = |𝑋(𝑓)|2 

= 𝑋(𝑓)𝑋∗(𝑓) 

= ℱ{𝑥(𝜏) ∗ 𝑥∗(−𝜏)} 

= ℱ{𝑅𝑥(𝜏)} 

 For a two-sided random signal 𝑛(𝑡), the Fourier transform may not exist 

4-PAM constellation map 

bits 𝒂𝒏 

01 3𝑑 

00 𝑑 

10 −𝑑 

11 −3𝑑 
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 Power spectrum does in fact exist for 𝑛(𝑡): 𝑃𝑛(𝑓) = ℱ{𝑅𝑛(𝜏)} 

 For zero-mean Gaussian random process 𝑛(𝑡) with variance 𝜎2: 

𝑅𝑛(𝜏) = 𝐸{𝑛(𝑡) ∗ 𝑛(𝑡 + 𝜏)} = 𝜎2𝛿(𝜏) 

𝑃𝑛(𝑓) = ℱ{𝑅𝑛(𝜏)} = 𝜎2 

 Noise at output of matched filter is 𝑛(𝑡) = 𝑤(𝑡) ∗ ℎ(𝑡) which has power spectrum 

𝑆𝑁(𝑓) = 𝑆𝑊(𝑓)𝑆𝐻(𝑓) =
𝑁0

2
|𝐻(𝑓)|2 

 Optimal matched filter result (see slides 14-12, 14-13, 14-14 for full derivation): 

ℎ𝑜𝑝𝑡 = 𝑘 𝑔∗(𝑇 − 𝜏) 

o Impulse response is dependent on the symbol period 

o Scaled, conjugated, time-reversed and shifted version of the pulse shape 𝑔(𝑡) 

o Maximizes peak pulse SNR 

[11:30] Matched filter for rectangular pulse 

 Convolve received input signal with rectangular pulse of duration 𝑇 sec 

 Equivalent to “integrate and dump” 

 𝑔0(𝑡) = 𝑔(𝑡) ∗ ℎ(𝑡) becomes a triangular pulse 

[11:35] Symbol error probability 

 
 𝑤(𝑡) is spectrally flat noise that follows a gaussian distribution 𝑁(0, 𝜎2) 

 Lowpass filtering Gaussian process produces a Gaussian process 

o Variance (noise power) scaled by twice filter’s bandwidth 

o Noise power at output is 𝜎2/𝑇 (see slide 14-19) 

 For symbol amplitudes of ±𝐴, Received signal 𝑟𝑛 is ±𝐴 + 𝑣𝑛 

 Threshold to estimate transmitted amplitude 

 Probability of error will be area under tail of Gaussian: 

𝑃(error|𝑠(𝑛𝑇𝑏) = −𝐴) = 𝑃(−𝐴 + 𝑣𝑛 > 0) = 𝑃(𝑣𝑛 > 𝐴) = 𝑃 (
𝑣𝑛

𝜎
>

𝐴

𝜎
) 

 Can be expressed in terms of 𝑄 function: 𝑃(error) = 𝑄 (√
𝐴2

𝜎2) = 𝑄(√𝑆𝑁𝑅) 

o 𝑄(𝑥) = 1 − Φ(𝑥), where Φ(𝑥) is the CDF for a Gaussian 

o 𝑄 function can also be related to error function in Matlab 
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